## Math 279 Lecture 26 Notes

#### Daniel Raban

November 30, 2021

### 1 Fixed Point Operators for Solving Abstract Regularity Structure PDEs

#### 1.1 Fixed point operators for solving our ill-posed PDEs

We are interested in ill-posed problems like:

$$h_t = \Delta h + |h_x|^2 + \xi - C,$$

where  $\xi$  is white noise. This is subcritical iff  $d \leq 1$ . If we have

$$u_t = \Delta u - u^3 + \xi + C_1 + C_2 u,$$

this model is subcritical if  $d \leq 3$ . Here, we can vary the constants, so we are dealing with a family  $\mathcal{F}$  of differential equations.

The general strategy for subcritical models is summarized in the following diagram:



We need to find a group action  $\mathcal{G}$  on our model so that if  $\xi^{\varepsilon} = \xi * \rho^{\varepsilon}$ , then

$$\lim_{\varepsilon \to 0} \mathcal{S}_a M_{\varepsilon}(\mathcal{L}(\xi^{\varepsilon}))$$

exists, where  $M_{\varepsilon}$  is a suitable family of members of  $\mathcal{G}$ . This  $\mathcal{G}$  would lead to a suitable  $\widehat{\mathcal{G}}$  on  $\mathcal{F}$ . In our stochastic setting, since our distributions are all Gaussian, Wick's trick would allow us to discover what  $\mathcal{G}$  is. Let us now focus on constructing  $\mathcal{S}_a$  as we did last time.

As we discussed before, we consider the weak formulation

$$h_t = p * (|h_x|^2 + \xi) + \overline{h},$$

where p is the heat kernel and  $\overline{h}$  solves the heat equation:

$$\begin{cases} \overline{h}_t = \overline{h}_{xx} \\ \overline{h}(x,0) = h^0(x). \end{cases}$$

For the other problem, we have

$$u = p * (-u^3 + \xi) + \overline{u}$$

with

$$\begin{cases} \overline{u}_t = \Delta \overline{u} \\ \overline{u}(x,0) = u^0(x) \end{cases}$$

Last time, we argued that  $f \mapsto p * f$  can be lifted to a suitable operator  $\mathcal{K}$  that can be decomposed as  $\mathcal{K} = \mathscr{I} + \widehat{\mathcal{K}}$ , where  $\widehat{\mathcal{K}}$  is polynomial like and  $\mathscr{I}$  is somewhat local. Ideally, we could like to have this: An operator  $\mathcal{K} : T \to T$  or  $\mathcal{K} : \mathcal{C}^{\alpha} \to \mathcal{C}^{\alpha+2}$  so that

$$\begin{cases} \Pi_x(\mathcal{K}\tau) = p * \Pi_x \tau & (f \in \mathcal{C}^\alpha \ \Pi_x(\mathcal{K}f)(x) = p * \Pi_x f(x)) \\ \Gamma \mathcal{K}\tau = \mathcal{K}\Gamma\tau. \end{cases}$$

Such  $\mathcal{K}$  would not exist. Here is the problem: if  $\tau \in T_{\alpha}$ , then  $|(\Pi_x \tau)(\varphi_x^{\delta})| \leq \delta^{\alpha}$ . So  $\mathcal{K}\tau \in T_{\alpha+2}$ , and we must have an estimate of the form  $|(\Pi_x(\mathcal{K}\tau))(\varphi_x^{\delta})| \leq \delta^{\alpha+2}$ . The problem is that in general, there is no reason for  $p * \Pi_x \tau$  to vanish like  $\delta^{\alpha+2}$  near the point x. This can be resolved if we subtract a suitable Taylor expansion. Motivated by this, we may define  $\mathscr{I}$  by the following recipe. If  $\tau \in T_{\alpha}$ ,

$$\Pi_x(\mathscr{I}\tau)(y) = p * \Pi_x\tau(y) - \sum_{k:|k| < \alpha + 2} \frac{\partial^k (p * \Pi_x\tau)}{k!} (y - x)^k.$$

Because of this, we do not expect to have  $\Gamma \mathscr{I} \tau = \mathscr{I} \Gamma \tau$ , but we do have that  $(\Gamma \mathscr{I} - \mathscr{I} \Gamma)(\tau)$ is in a sector of polynomials. (This should be compared with the differentiation operator: If " $\partial$ " is the lift of  $\frac{\partial}{\partial x_1}$ , then we do expect  $\Pi_x(\partial \tau) = \frac{\partial}{\partial x_1}(\Pi_x \tau)$  and  $\partial \Gamma = \Gamma \partial$ .)

# 1.2 Using graphical notation with regularity structures to solve abstract PDEs

In the abstract version,

$$\begin{cases} H = \mathscr{I}((\partial H)^2 + \Xi) + \text{Polynomial part from } \widehat{K} + \overline{h}\mathbf{1} \\ \mathcal{U} = \mathscr{I}(\Xi - U^3) + \text{Polynomial part} + \overline{u}\mathbf{1}, \end{cases}$$

where  $\Xi$  represents white noise, we use the following graphical notation.<sup>1</sup>



Here are all the terms we need to discuss H:



<sup>1</sup>I've decided to stop trying to type out any graphical notation. From here on out, it will all be pictures.

We want to formulate a fixed point problem for H.



It can be shown that if H satisfies the abstract equation, then  $e_1 = e_2 = 0$ .



Here, we have noted that by comparing coefficients, we can see that  $c_1 = c_2 = 1$ ,  $c_3 = 2$ , and  $c_4 = \hat{h}$ . From all this, we learn that



We can play a similar game with the abstract equation for  $\mathcal{U}$ . To have simpler notation, we write | for  $\mathscr{I}$  (instead of  $\wr$ ). We get



We still need to find the group G. This is a suitable set of transformations  $\Gamma: T \to T$ .

This group of  $16\times 16$  matrices is 7-dimensional.

